7-1 集合基础和基于二分搜索树的集合实现

image-20190812081241026

image-20190812081249439

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;

public class BST<E extends Comparable<E>> {

private class Node{
public E e;
public Node left, right;

public Node(E e){
this.e = e;
left = null;
right = null;
}
}

private Node root;
private int size;

public BST(){
root = null;
size = 0;
}

public int size(){
return size;
}

public boolean isEmpty(){
return size == 0;
}

// 向二分搜索树中添加新的元素e
public void add(E e){
root = add(root, e);
}

// 向以node为根的二分搜索树中插入元素e,递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, E e){

if(node == null){
size ++;
return new Node(e);
}

if(e.compareTo(node.e) < 0)
node.left = add(node.left, e);
else if(e.compareTo(node.e) > 0)
node.right = add(node.right, e);

return node;
}

// 看二分搜索树中是否包含元素e
public boolean contains(E e){
return contains(root, e);
}

// 看以node为根的二分搜索树中是否包含元素e, 递归算法
private boolean contains(Node node, E e){

if(node == null)
return false;

if(e.compareTo(node.e) == 0)
return true;
else if(e.compareTo(node.e) < 0)
return contains(node.left, e);
else // e.compareTo(node.e) > 0
return contains(node.right, e);
}

// 二分搜索树的前序遍历
public void preOrder(){
preOrder(root);
}

// 前序遍历以node为根的二分搜索树, 递归算法
private void preOrder(Node node){

if(node == null)
return;

System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}

// 二分搜索树的非递归前序遍历
public void preOrderNR(){

Stack<Node> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
Node cur = stack.pop();
System.out.println(cur.e);

if(cur.right != null)
stack.push(cur.right);
if(cur.left != null)
stack.push(cur.left);
}
}

// 二分搜索树的中序遍历
public void inOrder(){
inOrder(root);
}

// 中序遍历以node为根的二分搜索树, 递归算法
private void inOrder(Node node){

if(node == null)
return;

inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}

// 二分搜索树的后序遍历
public void postOrder(){
postOrder(root);
}

// 后序遍历以node为根的二分搜索树, 递归算法
private void postOrder(Node node){

if(node == null)
return;

postOrder(node.left);
postOrder(node.right);
System.out.println(node.e);
}

// 二分搜索树的层序遍历
public void levelOrder(){

Queue<Node> q = new LinkedList<>();
q.add(root);
while(!q.isEmpty()){
Node cur = q.remove();
System.out.println(cur.e);

if(cur.left != null)
q.add(cur.left);
if(cur.right != null)
q.add(cur.right);
}
}

// 寻找二分搜索树的最小元素
public E minimum(){
if(size == 0)
throw new IllegalArgumentException("BST is empty!");

return minimum(root).e;
}

// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}

// 寻找二分搜索树的最大元素
public E maximum(){
if(size == 0)
throw new IllegalArgumentException("BST is empty");

return maximum(root).e;
}

// 返回以node为根的二分搜索树的最大值所在的节点
private Node maximum(Node node){
if(node.right == null)
return node;

return maximum(node.right);
}

// 从二分搜索树中删除最小值所在节点, 返回最小值
public E removeMin(){
E ret = minimum();
root = removeMin(root);
return ret;
}

// 删除掉以node为根的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node){

if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
return rightNode;
}

node.left = removeMin(node.left);
return node;
}

// 从二分搜索树中删除最大值所在节点
public E removeMax(){
E ret = maximum();
root = removeMax(root);
return ret;
}

// 删除掉以node为根的二分搜索树中的最大节点
// 返回删除节点后新的二分搜索树的根
private Node removeMax(Node node){

if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
return leftNode;
}

node.right = removeMax(node.right);
return node;
}

// 从二分搜索树中删除元素为e的节点
public void remove(E e){
root = remove(root, e);
}

// 删除掉以node为根的二分搜索树中值为e的节点, 递归算法
// 返回删除节点后新的二分搜索树的根
private Node remove(Node node, E e){

if( node == null )
return null;

if( e.compareTo(node.e) < 0 ){
node.left = remove(node.left , e);
return node;
}
else if(e.compareTo(node.e) > 0 ){
node.right = remove(node.right, e);
return node;
}
else{ // e.compareTo(node.e) == 0

// 待删除节点左子树为空的情况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
return rightNode;
}

// 待删除节点右子树为空的情况
if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
return leftNode;
}

// 待删除节点左右子树均不为空的情况

// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;

node.left = node.right = null;

return successor;
}
}

@Override
public String toString(){
StringBuilder res = new StringBuilder();
generateBSTString(root, 0, res);
return res.toString();
}

// 生成以node为根节点,深度为depth的描述二叉树的字符串
private void generateBSTString(Node node, int depth, StringBuilder res){

if(node == null){
res.append(generateDepthString(depth) + "null\n");
return;
}

res.append(generateDepthString(depth) + node.e +"\n");
generateBSTString(node.left, depth + 1, res);
generateBSTString(node.right, depth + 1, res);
}

private String generateDepthString(int depth){
StringBuilder res = new StringBuilder();
for(int i = 0 ; i < depth ; i ++)
res.append("--");
return res.toString();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public class BSTSet<E extends Comparable<E>> implements Set<E> {

private BST<E> bst;

public BSTSet(){
bst = new BST<>();
}

@Override
public int getSize(){
return bst.size();
}

@Override
public boolean isEmpty(){
return bst.isEmpty();
}

@Override
public void add(E e){
bst.add(e);
}

@Override
public boolean contains(E e){
return bst.contains(e);
}

@Override
public void remove(E e){
bst.remove(e);
}
}

7-2 基于链表的集合实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
public class LinkedList<E> {

private class Node{
public E e;
public Node next;

public Node(E e, Node next){
this.e = e;
this.next = next;
}

public Node(E e){
this(e, null);
}

public Node(){
this(null, null);
}

@Override
public String toString(){
return e.toString();
}
}

private Node dummyHead;
private int size;

public LinkedList(){
dummyHead = new Node();
size = 0;
}

// 获取链表中的元素个数
public int getSize(){
return size;
}

// 返回链表是否为空
public boolean isEmpty(){
return size == 0;
}

// 在链表的index(0-based)位置添加新的元素e
// 在链表中不是一个常用的操作,练习用:)
public void add(int index, E e){

if(index < 0 || index > size)
throw new IllegalArgumentException("Add failed. Illegal index.");

Node prev = dummyHead;
for(int i = 0 ; i < index ; i ++)
prev = prev.next;

prev.next = new Node(e, prev.next);
size ++;
}

// 在链表头添加新的元素e
public void addFirst(E e){
add(0, e);
}

// 在链表末尾添加新的元素e
public void addLast(E e){
add(size, e);
}

// 获得链表的第index(0-based)个位置的元素
// 在链表中不是一个常用的操作,练习用:)
public E get(int index){

if(index < 0 || index >= size)
throw new IllegalArgumentException("Get failed. Illegal index.");

Node cur = dummyHead.next;
for(int i = 0 ; i < index ; i ++)
cur = cur.next;
return cur.e;
}

// 获得链表的第一个元素
public E getFirst(){
return get(0);
}

// 获得链表的最后一个元素
public E getLast(){
return get(size - 1);
}

// 修改链表的第index(0-based)个位置的元素为e
// 在链表中不是一个常用的操作,练习用:)
public void set(int index, E e){
if(index < 0 || index >= size)
throw new IllegalArgumentException("Set failed. Illegal index.");

Node cur = dummyHead.next;
for(int i = 0 ; i < index ; i ++)
cur = cur.next;
cur.e = e;
}

// 查找链表中是否有元素e
public boolean contains(E e){
Node cur = dummyHead.next;
while(cur != null){
if(cur.e.equals(e))
return true;
cur = cur.next;
}
return false;
}

// 从链表中删除index(0-based)位置的元素, 返回删除的元素
// 在链表中不是一个常用的操作,练习用:)
public E remove(int index){
if(index < 0 || index >= size)
throw new IllegalArgumentException("Remove failed. Index is illegal.");

Node prev = dummyHead;
for(int i = 0 ; i < index ; i ++)
prev = prev.next;

Node retNode = prev.next;
prev.next = retNode.next;
retNode.next = null;
size --;

return retNode.e;
}

// 从链表中删除第一个元素, 返回删除的元素
public E removeFirst(){
return remove(0);
}

// 从链表中删除最后一个元素, 返回删除的元素
public E removeLast(){
return remove(size - 1);
}

// 从链表中删除元素e
public void removeElement(E e){

Node prev = dummyHead;
while(prev.next != null){
if(prev.next.e.equals(e))
break;
prev = prev.next;
}

if(prev.next != null){
Node delNode = prev.next;
prev.next = delNode.next;
delNode.next = null;
size --;
}
}

@Override
public String toString(){
StringBuilder res = new StringBuilder();

Node cur = dummyHead.next;
while(cur != null){
res.append(cur + "->");
cur = cur.next;
}
res.append("NULL");

return res.toString();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import java.util.ArrayList;

public class LinkedListSet<E> implements Set<E> {

private LinkedList<E> list;

public LinkedListSet(){
list = new LinkedList<>();
}

@Override
public int getSize(){
return list.getSize();
}

@Override
public boolean isEmpty(){
return list.isEmpty();
}

@Override
public void add(E e){
if(!list.contains(e))
list.addFirst(e);
}

@Override
public boolean contains(E e){
return list.contains(e);
}

@Override
public void remove(E e){
list.removeElement(e);
}
}

7-3 集合类的复杂度分析

7-5 映射基础

image-20190812083354193

image-20190812083404515

image-20190812083418096